サイエンスニュースまとめは、 生まれたばかりのブログです。 応援して下さいね☆ お友達にもここを教えてあげて下さいね。

※取り上げて欲しいニュースやテーマを募集しています!コメント欄に書き込んで下さいね!!!

量子論

ブラックホールから脱出しようとした光は、まるでブーメランのように引き戻される

1: ライスシャワー ★ 2020/04/13(月) 02:12:18.59 ID:6J6cvcOI9

ブラックホールは光さえ吸い込む強力な重力源ですが、その周辺で見せる複雑な光の挙動が明らかになりました。

過去の観測データの洗い直したところ、ブラックホールから脱出しようとした光が、まるでブーメランのように引き戻されている痕跡が得られたのです。

この特殊な光の挙動によって、ブラックホールの降着円盤は自らの発光で自らを照らしているというとんでもない状態であることもわかりました。

この研究は、米国カリフォルニア工科大学の研究者Riley M. T. Connors氏を筆頭とした研究チームより発表されており、論文は3月27日付けで天文学を扱う査読付き科学雑誌『The Astrophysical Journal』に掲載されています。

no title


ブラックホールの周りの光

今回の研究は、2012年に運用が終了したロッシX線タイミングエクスプローラー(RXTE)衛星のアーカイブを組み合わせて行われました。

過去の観測データを、現代の技術で改めて洗い直し新しい発見をするというのは、最近の天文学ではよく報告される事例です。

観測されていたのはブラックホール連星「XTE J1550-564」です。これは太陽質量の10倍程度という恒星質量のブラックホールで、伴星の物質を吸い込んで明るく輝く降着円盤を作り出しています。

円盤の上下に吹き出すジェットも確認でき、マイクロクエーサーという呼び方もされています。

no title


X線観測データを確認した結果、ここではブラックホールの非常に近くから出ている光を観察できたが、それはブーメランのようにブラックホールに引き戻された痕跡があったというのです。

こうしたブラックホール周辺の光の挙動は、1970年代には予想されていたものですが、観測で確認されたのは初めてのことです。

重力に吸われる光

光は質量を持たず、直進しかしないという性質があります。なのに重力源のブラックホールに吸い込まれるというのは一見奇妙なことのように思えます。

しかし、重力とは単純に質量のあるものを吸い寄せる力ではなく、空間の歪みであることが一般相対性理論によって説明されています。

空間を2次元平面のゴムシートと考えた場合の重力源周辺の歪み
no title


ブラックホールのような強い重力源の周りでは、ゴムシートにボーリングの玉でも乗せたようにぐにゃりと空間が歪みます。

ここに勢いに載った光が飛び込むと、光はぐるぐるコイン募金箱に投げ込まれたコインの様に、歪んだ空間に合わせて軌道を曲げてぐるぐると周回するような挙動を取ってしまうのです。

ぐるぐるコイン募金箱。歪んだ場所では平たいコインも円を描くように転がる
no title


こうした原理で、光もブラックホールの周辺では歪んだ空間に捕らわれてブラックホールの中心へ引き込まれてしまうのです。

実際のブラックホールは高速で自転していると考えられ、挙動はこのぐるぐるコインよりもっと複雑です。

研究者の予想では、そこでは光が曲げられるだけではなくねじるような挙動も取っていると言います。

ブラックホールの周りでは高熱の降着円盤が発光していますが、その光はブラックホールから脱出しようとして、ブーメランのように引き戻されていることもX線観測から確認されました。

この光は引き戻された後、降着円盤の物質に反射して再度飛び出してくると言います。

つまり、ブラックホール周辺では、自分が輝いて放った光で別の部分が照らされているという奇妙な状況が起こっているのです。

この直接輝いて抜け出した光と、引き戻された後反射した光を分離すれば、ブラックホール周辺の状況をもっと詳しく知ることができると言います。

現在は確認が困難なブラックホールの自転速度なども、ここから計算できるかもしれないのです。

それにしても、自分で光って自分を照らすとは、アニメに登場する目立ちたがりキャラでもそこまではできないしょう。さすが謎多きブラックホール…といったところでしょうか。

https://nazology.net/archives/56354



引用元: http://tekito.2ch.sc/test/read.cgi/newsplus/1586711538/続きを読む

量子重力には対称性はない ― 大栗機構長らが証明

1: 一般国民 ★ 2019/06/21(金) 07:16:10.91 ID:CAP_USER

量子重力には対称性はない ― 大栗機構長らが証明
https://www.ipmu.jp/ja/20190619-symmetry
2019年6月19日
東京大学国際高等研究所カブリ数物連携宇宙研究機構(Kavli IPMU)

 画像:図1. 「量子重力理論は対称性を持たない」ことを背理法で証明する図。
    もし対称性があるとすると、それは図の灰色で塗られた部分にしか作用せず、中心の黒い点のまわりの状態には変化を起こさない。
    円周を細かく分けていくと、灰色の部分をいくらでも小さくできるので、対称性には、どこにも作用しないことになる。
    これは矛盾である。(Credit:Harlow and Ooguri)
 no title


 1. 発表概要
 東京大学国際高等研究所カブリ数物連携宇宙研究機構(Kavli IPMU) の大栗博司 (おおぐりひろし) 機構長は、マサチューセッツ工科大学物理学教室の Daniel Harlow 助教と共同で、重力と量子力学を統一する理論では、素粒子論の重要な原理であった対称性がすべて破れてしまうことを、ホログラフィー原理を用いて証明しました。この証明にあたっては、量子コンピューターで失われた情報を回復する鍵とされる「量子誤り訂正符号」とホログラフィー原理との間に近年発見された関係性を用いるという新たな手法が用いられました。本研究成果は、素粒子の究極の統一理論の構築に大きく貢献するものであるとともに、近年注目される量子コンピューターの発展にも寄与すると期待され、アメリカ物理学会の発行するフィジカル・レビュー・レター誌 (Physical Review Letters) に2019年5月17日付で掲載され、成果の重要性から注目論文(Editors’ Suggestion)に選ばれました。


 2. 発表内容
 宇宙が始まった当初、「電磁気力」「強い力」「弱い力」「重力」の4つの力が全て統一されていたと考えられています。ミクロの世界を記述する量子力学を基礎とした理論を用いて、「電磁気力」「強い力」「弱い力」の3つの力については統一的に説明できますが、重力を含めた4つの力も含め統一的に説明する理論については未だ研究途上の重要な課題であり、様々な面から研究がなされています。

 例えば、物理学にとって重要な「対称性」の概念について、量子力学で成り立っている「対称性」が重力を組み合わせてしまうことで成り立たなくなることが、以前より指摘されていました。しかしながら、この指摘について厳密な証明はされておらず、推測の域を出ていませんでした。

 今回、Kavli IPMU の大栗博司 (おおぐりひろし) 機構長は、マサチューセッツ工科大学物理学教室の Daniel Harlow 助教と共同で、重力と量子力学を統一する理論では、対称性がすべて破れてしまうことを、ホログラフィー原理を用いて証明しました。ホログラフィー原理とは、量子力学の記述するミクロな世界での重力の振る舞いを、重力を含まない量子力学の問題として説明することを可能とする理論です。中でも、1997年にプリンストン高等研究所のファン・マルダセナ (Juan Maldacena) 氏が発表した AdS/CFT 対応はホログラフィー原理を数学的に厳密に定義した代表的なものとして知られています。

 大栗機構長らは、今回の証明にあたって、この AdS/CFT 対応と「量子誤り訂正符号」との間に近年発見された関係性を用いるという新たな手法を用いました。「量子誤り訂正符号」とは、量子コンピューターで失われた情報を回復する鍵とされるものです。加えて、今回の証明により、陽子崩壊の示唆やモノポールの存在が予測されました。しかしながら、陽子崩壊の崩壊時間を定義するまでには至っていません。対称性に関しても、どのように破られるかを定量的に示すには至っていないことから、研究グループは今後更に研究を進めていく予定です。

 本研究に関して大栗機構長は「対称性は自然の基本的な概念であると一般的に考えられてきました。そして、多くの物理学者は、自然界には美しい一連の法則性が存在しなければならないと考えており、美しさを定量化する1つの方法は対称性であると考えています。しかし、今回私達は、量子力学と重力が統一されている最も基本的なレベルの自然の法則では、対称性が保たれないことを明らかにしました。つまり、物理学者達が抱いてきた対称性に対する信念が間違っていることを示したのです」と述べています。

 本研究成果は、アメリカ物理学会の発行するフィジカル・レビュー・レター誌 (Physical Review Letters) に2019年5月17日付で公開され、成果の重要性から注目論文 (Editors’ Suggestion) に選ばれました。

関連情報
Kavli IPMU
https://twitter.com/KavliIPMU/status/1141211169991974914
https://twitter.com/5chan_nel (5ch newer account)



引用元:http://anago.2ch.sc/test/read.cgi/scienceplus/1561068970/続きを読む

【量子力学】客観的実在は存在せず?量子力学の逆説「ウィグナーの友人」を初実験

1: しじみ ★ 2019/04/04(木) 15:29:49.54 ID:CAP_USER

量子力学分野における「ウィグナーの友人」と呼ばれる思考実験では、2人の観測者が相異なる矛盾する実在を体験できるという結論が導かれる。この結論は長年疑問視されてきたが、その結論が正しいことを検証する「実際」の実験を初めて実施した。

1961年のことだ。ノーベル物理学賞受賞者のユージン・ウィグナーは、さほど知られていない量子力学のパラドックスを論証した思考実験の概要をまとめた。ウィグナーの思考実験は、2人の観察者(ここでは、ウィグナーとウィグナーの知人)が異なる実在を体験できるという量子力学の奇妙な本質を示している。

以来、物理学者は「ウィグナーの友人」思考実験を使って測定の本質を探求し、客観的事実が存在するか否か議論してきた。客観的事実を立証するために実験をする科学者にとって、この議論は重要だ。もしも、科学者たちが異なる実在をそれぞれ体験するなら、彼らが合意できる客観的事実は存在しないことになる。

ウィグナーの思考実験はディナーの後の会話のネタとしては面白いが、これまでは思考実験を超えるものではなかった。

ところが、物理学者たちは昨年、最新の量子テクノロジーを使えば、ウィグナーの友人の思考実験を実際の実験で再現できることに気づいた。すなわち、研究所で異なる実在を作り出し、それらを比較することで、異なる実在が共存可能かどうかを明らかにできるはずだというのだ。

初めてこの実験を実施したと発表したのが、スコットランドのエディンバラにあるヘリオット・ワット大学のマッシミリアーノ・プロイエッティらの研究チームだ。彼らは異なる実在を作り上げ、比較した。そして、互いに相容れない異なる実在は共存可能であり、実験の客観的事実に合意することは不可能であり、ウィグナーは正しかったという結論に至った。

https://www.technologyreview.jp/s/130562/a-quantum-experiment-suggests-theres-no-such-thing-as-objective-reality/



引用元:http://anago.2ch.sc/test/read.cgi/scienceplus/1554359389/続きを読む

宇宙で観測できない95%の正体は「暗黒流体」であるという新理論が発表

1: 動物園 ★ 2018/12/12(水) 23:32:44.52 ID:CAP_USER9

 宇宙の95%を占める「欠けている」部分は観測することができない。それはいったいなぜなのか?現代物理学最大の難問の1つとされていた。

 だが、イギリス・オックスフォード大学の科学者が打ち出した新理論がこれを解決するかもしれない。

 ダークマター(暗黒物質)とダークエネルギーの統一に成功したというのだ。両者を負の質量を持つ「暗黒流体」と仮定すればその説明はつくという。

【宇宙の95%は観測することができない】

 ダークマター(暗黒物質)やダークエネルギー(暗黒エネルギー)とは、直接観測することはできないが、ほかの観測できる物質が受けている重力の影響などから間接的にその存在が推測される物質やエネルギーのことだ。 

 これまでの研究からは、じつは人が宇宙で観測できているのはたった5パーセント程度でしかなく、あとの95パーセントはダークマターやダークエネルギーであるらしいことが明らかになっている。 

 しかし現在広く受け入れられている宇宙理論「Λ-CDMモデル」は、ダークマターとダークエネルギーが物理的にはどのようなものなのか、何も説明してくれない。

【ダークマターとダークエネルギーの統合に成功した理論】

 『Astronomy and Astrophysics』に掲載されたジェイミー・ファーンズ(Jamie Farnes)博士が新たに提唱した理論によると、ダークマターとダークエネルギーを「暗黒液体」と考えれば、それらを統合することができるのだという。

https://www.excite.co.jp/news/article/Karapaia_52268562/



引用元:http://ai.2ch.sc/test/read.cgi/newsplus/1544625164/続きを読む

量子力学「操作」に限界 電通大発見、計算機に応用も

1: しじみ ★ 2018/09/24(月) 12:16:22.03 ID:CAP_USER

 電気通信大学の田島裕康特別研究員らは量子力学の性質を使う非常に小さな対象を操作する際の精度に限界があることを突き止めた。操作の精度を一定以上に高めようとすると、操作を行う装置のエネルギーのばらつきが大きくなることを導いた。次世代の高速計算機と期待される量子コンピューターなどで使う量子デバイスの設計に応用できるという。

 従来のコンピューターが0か1のビットを基本単位として計算するのに対し、量子コンピューターは0でも1でもある「重ね合わせ」の状態が存在する量子力学の性質を利用している。これを実現するには、レーザー発振器で光を打ち込んで超電導回路を操作したり、磁力を使って、量子力学で使われる磁石の性質(スピン)を変化させたりすることが必要だ。

 田島特別研究員らはレーザー発振器などの量子力学で使う装置の操作の誤差を一定以下に小さくしようとすると、装置のエネルギーのゆらぎが大きくなり、大きなエネルギーが必要になることを数式で示した。

 量子力学の原理をコンピューターに応用することで、計算速度を高められることは分かっているが、重ね合わせの状態を保つのが難しい点が、高い計算能力を持つ量子コンピューターが開発できていない要因の1つとされている。今回の成果は量子デバイスの効率的な設計などに生かせる可能性がある。

日本経済新聞
https://www.nikkei.com/article/DGXMZO35610010R20C18A9X90000/



引用元:http://anago.2ch.sc/test/read.cgi/scienceplus/1537758982/
続きを読む

グラフェンがブラックホールの低次元ホログラムとなることを理論的に解明

1: 野良ハムスター ★ 2018/07/29(日) 10:37:14.96 ID:CAP_USER

(要約 by 野良ハムスター)
・カナダ、イスラエル、英国、米国の物理学者チームは、不規則な形状のグラフェンの破片(フレーク)がブラックホールの量子ホログラムになることを理論的に示した。
・Sachdev-Ye-Kitaev(SYK)モデルによると、(1+1)次元時空におけるブラックホールの時空構造は、より低次元な(0+1)次元時空におけるグラフェンフレークの時空構造の間には、一種のホログラフィックな双対性が成り立つ。
・SYKモデルによって記述されるホログラフィックな双対性からは、非ゼロの残余エントロピーや量子カオス伝搬といったブラックホールの特徴的な性質が示されるため、物理学者の関心を集めている。
・ホログラフィックな双対性から量子力学と重力の関係に関する根本的な疑問に答えを出せるかもしれない。
・グラフェンフレークがブラックホールになるためには、境界部が極めて不規則であり、かつ内部が清浄な状態であることによって、電子の波動関数がランダムな空間構造をとるという条件が要求される。

Physicists have theoretically shown that, by applying a magnetic field to a small, irregularly shaped graphene flake, the flake becomes a quantum hologram of a black hole. This means that the graphene flake recreates the spatial structure and characteristic properties of a black hole, but in a much smaller, lower-dimensional system.

The physicists, Anffany Chen and coauthors from institutions in Canada, Israel, the UK, and the US, have published a paper on the graphene quantum hologram in a recent issue of Physical Review Letters.

"We show that a rather ubiquitous and well-studied material -- graphene -- can behave in novel and exciting ways under certain conditions," coauthor Marcel Franz, a physics professor at the University of British Columbia, told Phys.org. "Specifically, the electrons in a nanoscale-sized flake of graphene with an irregular boundary and in an applied magnetic field could realize the so-called Sachdev-Ye-Kitaev (SYK) model."

As the physicists explain, the SYK model illustrates a type of "holographic duality," in which a higher-dimensional system (here, a black hole in (1+1)-dimensional spacetime) can be represented by a lower-dimensional system (in this case, the electrons in graphene, which occupy a (0+1)-dimensional spacetime).

The type of holographic duality illustrated by the SYK model is particularly interesting because it exhibits some of the signature properties of black holes, such as non-zero residual entropy and quantum chaos propagation. It may also help answer fundamental questions about the connection between quantum mechanics and gravity.

"The SYK model is of great interest to physicists today because it is believed to contain a holographic description of a quantum black hole," Franz said. "Some of the most enigmatic mysteries in modern physics lie at the interface between Einstein's general relativity (a theory describing spacetime, gravity and black holes) and quantum mechanics (a theory describing microscopic phenomena, electrons, atoms, etc). A better understanding of the SYK model could therefore shed light on these fundamental questions."

Unlike other systems that have been proposed to demonstrate the SYK model, the new quantum phase of graphene does not require any advanced fabrication techniques and should be realizable using existing technology. The main requirements are that the graphene flake have a highly irregular boundary and a clean interior so that the electron wave functions have a random spatial structure, which provides the necessary conditions for realizing the hologram of a black hole.

"We are currently working on understanding the transport properties of the graphene flake in the SYK regime," Franz said. "More generally, we are hoping that our theoretical results will motivate experimentalists to study graphene flakes of the type required to produce the SYK physics, and we are ready to provide theoretical support to any such efforts."

https://phys.org/news/2018-07-holographic-image-black-hole-graphene.html



引用元:http://anago.2ch.sc/test/read.cgi/scienceplus/1532828234/続きを読む

奇妙な原子「パイ中間子原子」の大量生成で真空とクォーク凝縮の謎に迫る

1: しじみ ★ 2018/04/22(日) 03:25:24.70 ID:CAP_USER

 理化学研究所、奈良女子大学、鳥取大学などからなる国際共同研究グループは、
「パイ中間子原子」という奇妙な原子を、従来の数十倍の時間効率で大量生成することに成功した。

 原子の中には電子と原子核が存在し、原子核は陽子と中性子によって構成される。
陽子や中性子を分割すると、素粒子であるクォークとなる。電子は他の粒子に比べ無視できるほど軽いため、
原子の質量はクォーク質量の和となるように思える。
ところが、実際はその100倍も重いという。これを2008年にノーベル物理学賞を受賞した南部陽一郎博士は、
クォークに「クォーク凝縮」がまとわりついているためだと考えた。

 クォーク凝縮とは、クォークと反クォークが対となり真空中に凝縮している状態のこと。
宇宙創成直後の高温・高密度状態では存在しなかったものの、その後宇宙が広がり冷えていく過程で発生したとされる。

 クォーク凝縮の存在を実証する鍵となるのが、原子核内部の精密測定だ。
原子核の中は水の約100兆倍もの高密度で、宇宙創生直後と同様にクォーク凝縮の量が減少していることが期待される。
そこで本研究グループは、原子核に電子ではなくその300倍の質量を持つパイ中間子を束縛させた
「パイ中間子原子」の精密測定に取り組んだ。パイ中間子は原子核表面をこするような周回軌道をとるため、
これを詳しく調べることで、原子核内部の情報を得ることができる。

 そして今回、理化学研究所が誇る世界最高強度の加速器を用い、
従来の数十倍の時間効率で大量のパイ中間子原子のデータを得ることに成功。これにより、
次のステップでは、より多くのデータから原子核内のクォーク凝縮の減少率を高精度で決定することを目指すとしている。

論文情報:【Physical Review Letters】
Spectroscopy of pionic atoms in 122Sn(d,3He) reaction and angular dependence of the formation cross sections
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.152505

大学ジャーナル
http://univ-journal.jp/20379/?show_more=1



続きを読む
最新記事
_
記事検索
相互RSS
連絡先
おすすめ理系学問入門書
大学学部生レベルの物理化学の名著。学んだアトキンスが何版かでマウントを取り合う人たちもいます。


基礎から丁寧に説明している量子力学。


遺伝子とは?種とは?を探究した名著。


数学とこの世界の生命との不思議な関係性を解き明かしています。

その他おすすめ書籍
これを読んで英語論文を書きました…
(理系英語論文の構文を学ぶなら、同じ分野のきちんとした英語論文の文章を参考にするのが一番良いとは思いますが、日本語思考と英語記述との橋渡しになりました。)



現代の世界情勢を理解するために最低限の世界史の知識は必須!