サイエンスニュースまとめは、 生まれたばかりのブログです。 応援して下さいね☆ お友達にもここを教えてあげて下さいね。

※取り上げて欲しいニュースやテーマを募集しています!コメント欄に書き込んで下さいね!!!

金属

ネコ用アルミホイル、爆誕

1: 風吹けば名無し 2020/09/27(日) 01:21:13.31 ID:xuSsdgIl0

no title


ええんか…


2: 風吹けば名無し 2020/09/27(日) 01:21:26.86 ID:xuSsdgIl0

no title


131: 風吹けば名無し 2020/09/27(日) 01:34:47.14 ID:MdkTjYuGa

>>2
かわヨ



引用元: http://tomcat.2ch.sc/test/read.cgi/livejupiter/1601137273/続きを読む

飛行機の窓の角が丸くなった理由には血塗られた歴史がある

1: 朝一から閉店までφ ★ 2019/07/24(水) 18:40:52.88 ID:CAP_USER

2019年07月23日 07時00分 乗り物


By Chris Liverani

小さくなっていくビルやどこまでも広がる一面の雲を窓から眺めるのが飛行機に乗る楽しみの1つという人も多いはず。そんな飛行機の窓はどれも角が丸くなっていて、地上の建物のような四角い窓がついていることはありません。飛行機の窓がたどった「血塗られた歴史」について、プログラマーのジェイソン・レフコヴィッツ氏が自身のブログで解説しています。

Why airplane windows have round corners | Just Well Mixed
https://jasonlefkowitz.net/2016/09/why-airplane-windows-have-round-corners/

初期の飛行機の歴史とは「軍用機の歴史」といえます。第一次世界大戦と第二次世界大戦では飛行機技術が軍事目的で利用され、軍用機で制空権を取ることは戦局を一変させるほど大きな意味合いを持ちました。第二次世界大戦が終結してようやく、飛行機の仕事は人と荷物を運ぶことになったわけです。

第二次世界大戦後の1949年、プロペラエンジンを搭載したプロペラ機が主流だった中、デ・ハビランド・エアクラフトが高出力で低騒音・低振動な新技術「ジェットエンジン」を搭載した旅客機「DH.106 コメット」を発表しました。DH.106 コメットによる空の旅は静かで快適で、出力を生かした高高度飛行によって天気の影響を受けにくく、さらに飛行速度も1.5倍。運行開始は1952年でしたが、登場後まもなくDH.106 コメットはイギリス航空機業界を席巻します。


しかし就航から1年後の1954年1月10日、英国海外航空シンガポール発ロンドン行781便が地中海上空で突如爆発、乗組員6名と乗客29名の合計35名が全員死亡するという墜落事故が起こってしまいます。さらに同年4月8日、南アフリカ航空にリースされていた機体がイタリアの西側に位置するティレニア海で爆発し、乗組員7名と乗客14名の合計21人が犠牲になりました。この一連の事故はコメット連続墜落事故として社会問題となり、当時のイギリス首相ウィンストン・チャーチルが「資金と人員を惜しまず徹底調査せよ」と声明を出す事態となりました。

イギリスの航空機に関する国立研究施設であるロイヤル・エアクラフト・エスタブリッシュメントはチャーチルの命を受けて原因究明に奔走します。イタリア沖に墜落した機体のサルベージや大がかりな再現実験により判明したのは、当時のDH.106 コメットの「窓の角」が事故を引き起こしたということでした。


ジェットエンジンの出力によってDH.106 コメットはより抵抗の少ない高高度飛行が可能になりましたが、人間はそのような高高度の低気圧に耐えられないという問題がありました。その問題の解決策となったのが「機内の加圧」です。機内を加圧することによって外の空気が薄くなるような高度でも内部の人間が呼吸できるわけです。

しかし、機内を加圧すると飛行機の機体自身に圧力がかかります。当時のDH.106 コメットの窓は角が直角だったため、応力集中という現象により角の部分には過大な圧力がかかってしまいました。1年間の飛行を経たDH.106 コメットの窓の角は金属疲労によりもろくなり、圧力に耐えきれず崩壊。急激な減圧が事故を引き起こしたということです。

原因が判明したDH.106 コメットは改良されましたが、デ・ハビランド・エアクラフトは倒産。航空機製造の覇権はボーイングやロッキードなどのアメリカのメーカーが握ることとなり、世界の航空機の窓の角は丸くなったというわけです。
https://gigazine.net/news/20190723-why-airplane-windows-round-corners/



引用元:http://anago.2ch.sc/test/read.cgi/scienceplus/1563961252/
続きを読む

史上初、水素の金属化に成功? 今度こそ本当か

1: 一般国民 ★ 2019/07/01(月) 00:18:30.82 ID:CAP_USER

史上初、水素の金属化に成功? 今度こそ本当っぽい
https://headlines.yahoo.co.jp/hl?a=20190629-00010005-giz-sci
https://headlines.yahoo.co.jp/hl?a=20190629-00010005-giz-sci&p=2
2019/6/29
YAHOO!JAPAN NEWS,ギズモード・ジャパン

【科学(学問)ニュース+】

 物理界のはぐれメタル捕獲で、人類の経験値が爆上がりするかも。

 80年以上前、物理学者のユージン・ウィグナーが、水素に特定の温度と圧力をかけると金属になりうる、と予測しました。
 水素って目に見えない気体のイメージですが、それが金属になるっていうコンセプトがメタルスライムっぽくていいですね。
 その後数々の研究者が金属水素の生成に挑戦してきたのに誰も見つけられてないっていう意味では、
 はぐれメタルといったほうがいいかもしれません。

 が、ついに今、ある研究チームがそれに成功した…のかもしれません。
 フランス原子力庁のPaul Loubeyre氏を中心とする研究チームが、
 液体水素に地球の核内部以上の圧力をかけた実験結果についての論文をarXivにポストしました。
 Loubeyre氏らは、液体水素に今までにない高い圧力を与えることで、金属のような性質を呈したと言っています。

 ただこれまでにも、たとえば2017年にハーバード大学の研究チームが、
 その前には2012年にドイツのマックス・プランク研究所のチームが、
 金属水素の生成成功を主張していましたが、どちらもわりと懐疑的な反応をされていて、
 その主張の正しさも確認できていません。
 でも専門家の中には、今回こそは本物だと考えている人たちもいます。

 ・金属水素ってすごいの?

■■中略

 ・この実験のミソ
 論文を書いたLoubeyre氏らはまずこれまでの研究を生かし、
 ダイヤモンドアンビルセル(ごく小さなダイヤモンドふたつの間にサンプルをはさんで超高圧をかける機械)で気体状の水素を310GPaで圧縮し、
 固体の水素を生成しました。
 そして彼らは圧力をさらに上げていき、粒子加速器のSOLEILシンクロトロンが出す赤外線に水素サンプルがどう反応するかを計測しました。

 すると圧力425GPa前後、温度80ケルビン(摂氏マイナス193.15度)の状態で、サンプルが突然すべての赤外線を吸収し始めました。
 この状態は論文では「バンドギャップが埋まった」と書かれてるんですが、言い換えると、
 エネルギーを加えなくても水素サンプル上を電子が通れるようになったということです。

 まとめると、彼らは水素ガスを超コンパクトに圧縮して量子閉じ込め効果を利用することで、
 水素に金属のような電気を流す性質を与えることができた、と言ってるわけです。

 論文によれば、この実験を成立させた要素がふたつあります。
 ひとつは、ダイヤモンドアンビルセルの中心の圧力がかかる部分、ダイヤモンドのパーツを、従来のような平らな形じゃなく、
 ドーナツ型みたいな「トロイダル」という形にしたことです。
 これによって、従来のダイヤモンドアンビルセルの400GPaという圧力の上限を超えることができました。
 ふたつめに、彼らが開発した新しいタイプの赤外線顕微鏡を使うことで、よりノイズの少ない計測が可能になったそうです。

 この結果はまだ査読を受けてない、つまりまだ他の専門家の検証を受けていなくて、主要な学術誌には掲載されていません。
 なのでもちろん、他の研究者が同じことを再現してもいません。
 上にも書いたように、これまでたくさんの研究者が金属水素生成に挑んでいて、成功を発表しては否定されてきました。
 なので今回も、ぬか喜びになる可能性があります。

 ・今回こそは大発見かも?

■■中略

 Source: arXiv、Nature、Jstage、Wikipedia、Twitter
 Ryan F. Mandelbaum - Gizmodo US [原文] ( 福田ミホ )

■■中略部はソースをご覧ください。



引用元:http://anago.2ch.sc/test/read.cgi/scienceplus/1561907910/
IMG_10

続きを読む

中国の金属加工技術が凄すぎる

1: 風吹けば名無し 2019/03/27(水) 01:06:16.19 ID:kDoVmtmr0




引用元:http://tomcat.2ch.sc/test/read.cgi/livejupiter/1553616376/続きを読む

電子レンジでプラチナ回収 新たな都市鉱山に期待

1: しじみ ★ 2017/12/25(月) 12:03:57.31 ID:CAP_USER

山形大の遠藤昌敏准教授(分析化学・環境化学)らの研究チームが、家庭用電子レンジを使い、
自動車の排ガス浄化装置からプラチナなどのレアメタル(希少金属)を回収するのに成功した。
実用化できれば廃棄自動車のリサイクルが容易になり、新たな「都市鉱山」としての期待も高まる。

 セラミックを主体とする排ガス浄化装置はこれまで、一度粉砕し、
溶解や製錬などの工程を経てプラチナ類を回収してきた。だが時間もコストもかかるため、より簡単な方法が検討されてきた。
 約27時間を要した作業が約8分に短縮。車2台分の装置から回収できるプラチナは指輪1個分という。

画像: 回収されたプラチナの粉末
IMG_3924
http://www.tokyo-np.co.jp/s/article/images/2017122401001515.jpg

東京新聞
http://www.tokyo-np.co.jp/s/article/2017122401001509.html


ビットコイン取引高日本一の仮想通貨取引所 coincheck bitcoin続きを読む
最新記事
_
記事検索
相互RSS
連絡先
おすすめ理系学問入門書
大学学部生レベルの物理化学の名著。学んだアトキンスが何版かでマウントを取り合う人たちもいます。


基礎から丁寧に説明している量子力学。


遺伝子とは?種とは?を探究した名著。


数学とこの世界の生命との不思議な関係性を解き明かしています。

その他おすすめ書籍
これを読んで英語論文を書きました…
(理系英語論文の構文を学ぶなら、同じ分野のきちんとした英語論文の文章を参考にするのが一番良いとは思いますが、日本語思考と英語記述との橋渡しになりました。)



現代の世界情勢を理解するために最低限の世界史の知識は必須!